01 现在的位置:首页 > 期刊导读 > 2015 > 01 >

分数阶嵌入的广义多重集典型相关分析

【作者】 管睿 孙权森 沈肖波    南京理工大学计算机科学与工程学院 南京210094

【关键词】 模式识别 特征抽取 维数约

摘要】随着数据处理方式以及描述角度的不同,同一模式总是能够获得多种不同的特征表示.由于这些特征表示总是反映了同一模式的不同特性或视角,因此,对其进行有效地抽取与融合后,不仅可以保留参与抽取的多组特征的有效鉴别信息,还可以在一定程度上消除特征间的冗余信息,降低识别算法的复杂度,对模式分类来说无疑具有重要的实际意义.由于传统的维数约减方法,如主成分分析(PCA)与线性鉴别分析(LDA),主要针对模式的一组特征进行处理,并不适合对多表示数据进行融合与特征抽取,因此,本文以多表示数据为研究对象,深入研究了多重集典型相关分析的相关理论与算法,采用分数阶思想对组内与组间样本协方差的特征值和奇异值进行重新估计,然后建立分数阶组内与组间散布矩阵,同时引入监督信息,构建了分数阶嵌入的多重集典型相关分析(FEGMCCA)理论框架.

上一篇:基于光线变化的显著性区域提取
下一篇:应用局部结构与方向张量的图像分割算法研究

版权所有:《南京大学学报(自然科学版)》 苏ICP备10085945号
地址:江苏省南京市鼓楼区汉口路22号,《南京大学学报》编辑部,210093