01 现在的位置:首页 > 期刊导读 > 2018 > 01 >

HSEC:基于聚类的启发式选择性集成

【作者】 郑丽容 [1] 洪志令 [2]

【关键词】 集成学习 选择性集成学习 聚类 降维

摘要】提出一种基于聚类的启发式选择性集成学习算法.集成学习通过组合多个弱分类器获得比单一分类器更好的学习效果,把多个弱分类器提升为一个强分类器.理论上来说弱分类器的个数越多,组合的模型效果越好,但是随着弱分类器的增多,模型的训练时间和复杂度也随之递增.通过聚类的方法去除相似的弱分类器,一方面有效降低模型的复杂度,另一方面选出差异性较大的弱分类器作为候选集合.之后采用启发式的选择性集成算法,对弱分类器进行有效的组合,从而提升模型的分类性能.同时采用并行的集成策略,提高集成学习选取最优分类器子集效率,可以有效地减少模型的训练时间.实验结果表明,该算法较传统方法在多项指标上都有着一定的提升.

上一篇: 面向单调分类的简洁单调TSK模糊系统
下一篇: 基于稀疏聚类的无监督特征选择

版权所有:《南京大学学报(自然科学版)》 苏ICP备10085945号
地址:江苏省南京市鼓楼区汉口路22号,《南京大学学报》编辑部,210093